miR-145 and miR-143 Regulate Odontoblast Differentiation through Targeting Klf4 and Osx Genes in a Feedback Loop
نویسندگان
چکیده
منابع مشابه
ARTICLES miR-145 and miR-143 regulate smooth muscle cell fate and plasticity
MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smoo...
متن کاملMiR-143 and MiR-145 Regulate IGF1R to Suppress Cell Proliferation in Colorectal Cancer
Insulin-like growth factor 1 receptor (IGF1R) is a transmembrane receptor that is activated by insulin-like growth factor 1 (IGF-1) and by a related hormone called IGF-2. It belongs to the large class of tyrosine kinase receptors and plays an important role in colorectal cancer etiology and progression. In this study, we used bioinformatic analyses to search for miRNAs that potentially target I...
متن کاملMicroRNA Expression Profile Reveals miR-17-92 and miR-143-145 Cluster in Synchronous Colorectal Cancer
The expression of abnormal microRNA (miRNA, miR) is a ubiquitous feature of colorectal cancer (CRC). The pathological features and clinical behaviors of synchronous CRC have been comprehensively described; however, the expression profile of miRNA and small nucleolar RNA (snoRNA) in synchronous CRC has not been elucidated. In the present study, the expression profile of miRNA and snoRNA in 5 syn...
متن کاملmiR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6
Metastasis is a major clinical obstacle responsible for the high mortality and poor prognosis of gastric cancer (GC). MicroRNAs (miRNAs) are critical mediators of metastasis that act by modulating their target genes. In this study, we found that miR-143 and miR-145 act via a common target gene, MYO6, to regulate the epithelial-mesenchymal transition (EMT) and inhibit metastasis. We determined t...
متن کاملA feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness
Self-renewal and pluripotency are two fundamental characteristics of embryonic stem cells (ESCs) and are controlled by diverse regulatory factors, including pluripotent factors, epigenetic regulators and microRNAs (miRNAs). Although histone methyltransferases are key epigenetic regulators, whether and how a histone methyltransferase forms a network with miRNAs and the core pluripotent factor sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2013
ISSN: 0021-9258
DOI: 10.1074/jbc.m112.433730